
www.rhopenlabs.africa

Article LABS
D E C E M B R E  2 0 2 4

Spring Boot Microservices: Spring
Security with Api Gateway

Implementation

Article written by Hernadez Ebolo Ekangwo, a cybersecurity
analyst specializing in incident response and threat
intelligence, at RHOPEN Labs.

DECEMBRE 2024



Article LABS

1

D E C E M B R E  2 0 2 4

Disclaimer of Liability

The information contained in this article is intended for
educational and awareness purposes only, especially for
cybersecurity professionals in francophone Africa. 

The examples and scenarios described here should not be
used for illegal or unethical activities. The authors and
distributors of this article are not liable for any misuse or
malevolence of the information provided.

Businesses and individuals should consult with cybersecurity
professionals for specific advice tailored to their unique needs
and contexts. Any attempt to exploit the security breaches
described in this article for personal or business gain is
strongly condemned and may result in legal action



Article LABS

2

D E C E M B R E  2 0 2 4

In this article we shall be discussing about implementing an api gateway for our
microservices in the same service as spring security.

In my past years as a senior software engineer, I have noticed and particularly worked on
both architectural type Monolith and Microservices. From observations Microservice
architecture has drastically increase it usage. 

So, in this article we shall place our main focus on implementing an API gateway for our
spring boot microservice architecture directly into our spring security microservice. For
those not verse with spring security an article will be published related to that.

What exactly is spring security: Spring Security is a framework that provides authentication,
authorization, and protection against common attacks. With first class support for securing
both imperative and reactive applications, it is the de-facto standard for securing Spring-
based applications.
With this perspective instead of creating a separate microservice for our API gateway we
decided to make it up in the spring security for the following reasons:

Centralized security model
Performance and Latency improvement
Enhanced Scalability and Flexibility
Improve developer productivity

For those who have implemented API gateway precedent to December 2023 must have
noticed there was only a single module for Spring cloud gateway which was meant for
Reactive Solution (Webflux) but not MVC so later than December 2023 a new Spring cloud
gateway was introduce called Spring Cloud Gateway Server MVC built on Spring Boot and
Spring WebMvc.fn. which actually unblock the complexity of implementing an api gateway
for your MVC spring boot application. 
Base on this the implementation is somehow different from the original Spring Cloud
Gateway something which was some how difficult to get the right annotations from the
beginning. To demonstrate this I have created two spring services one which is the spring
security and the other normal user services.



Article LABS
D E C E M B R E  2 0 2 4

3

Let’s goooooooooo
First thing first, in the spring pom.xml file the spring gate was included we use spring-initializr
for that. take note like I said earlier there are two and the right one is the Gateway and not
Reactive Gateway if you are architecture is an MVC.



Article LABS
D E C E M B R E  2 0 2 4

4

Those are the dependency to be included for the gateway. After this we are sure and certain
our spring security service now includes gateway properties.
Next, we have two methods of implementing our routing for the gateway (using Java class
and using Property file) we shall have an overview of each.



Article LABS
D E C E M B R E  2 0 2 4

5

Approach 1: Using Java Class-: This approach relies on creating a package name route in the
root project then creating a class name as Route.class with the following route config for
example.

As we can see the route config.. I use the RequestPredicates to define the path which I what
to contact for the other service and the HandlerFunction to indicate the Url server of the
service.
This alone is sufficient for our gateway but remember that this is included with spring security
and some config has to be done effectively.
Firstly we need to resolve CORS issue with our spring security so the frontend can asses all
endpoints in the service both on the spring security service and the second microservice.



Article LABS
D E C E M B R E  2 0 2 4

6

So our security microservice will loke like this 

package com.security.rhopenlabs.gateway.config;import org.springframework.context.annotation.Bean;import

org.springframework.context.annotation.Configuration;import org.springframework.security.config.Customizer;import

org.springframework.security.config.annotation.web.builders.HttpSecurity;import

org.springframework.security.web.SecurityFilterChain;import org.springframework.web.cors.CorsConfiguration;import

org.springframework.web.cors.CorsConfigurationSource;import

org.springframework.web.cors.UrlBasedCorsConfigurationSource;import java.util.Arrays;import

java.util.List;@Configurationpublic class SecurityConfig {    private final String[] freeResourceUrls = {"/swagger-

ui.html", "/swagger-ui/**", "/v3/api-docs/**", "/swagger-resources/**", "/aggregate/**",”/call/**”};    @Bean    public

SecurityFilterChain securityFilterChain(HttpSecurity httpSecurity) throws Exception {        return

httpSecurity.authorizeHttpRequests(authorize -> authorize

.requestMatchers(freeResourceUrls).permitAll()                        .anyRequest().authenticated())

.cors(corsConfigurer -> corsConfigurer.configurationSource(corsConfigurationSource()))

.oauth2ResourceServer(oauth2 -> oauth2.jwt(Customizer.withDefaults()))                .build();    }    @Bean

CorsConfigurationSource corsConfigurationSource() {        CorsConfiguration configuration = new

CorsConfiguration();        configuration.setAllowedOrigins(List.of("*"));

configuration.setAllowedMethods(Arrays.asList("GET","POST"));        configuration.setAllowedHeaders(List.of("*"));

UrlBasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource();

source.registerCorsConfiguration("/**", configuration);        return source;    }}



Article LABS
D E C E M B R E  2 0 2 4

7

The difficulties were to get the right config:

once this is done we can now acces the other service with juste the gateway url and specify
the endpoint we want to get in the other service.

Approach 2: Property file (application.properties) this appraoche include defining the config
in the application.properties file remember I said this config is different from the first
implementation of Reactive application spring cloud gateway..

Actually, this config was for the first
spring cloud gate which meant for
Reactive applications
After many tries and documentation, I
found out for Spring cloud gateway
mvc is different something no other
blocs never mentioned before since
they make use of java class config.

With this you’re all set for you API gateway remember to always apply CORS config in your
entire environment.  See you shortly 



The copyright in this article is vested in the author and RHOPEN LABS.
The article may not be reproduced in whole or in part without the
express written permission of the author and RHOPEN LABS. . Each
author contributes to the RHOPEN LABS blog in a personal and
professional capacity.

Lien LinkedIn 

A B O U T  T H E  R E A C T O R  I N  T H E  A R T I C L E :  

H E R N A D E Z  E B O L O  E K A N G W O  I S  A  C Y B E R S E C U R I T Y
A N A L Y S T  S P E C I A L I Z I N G  I N  I N C I D E N T  R E S P O N S E  A N D
T H R E A T  I N T E L L I G E N C E .  H E  A L S O  H A S  E X P E R T I S E  I N
C Y B E R S E C U R I T Y  E N G I N E E R I N G .

A C T I V E  I N  T H E  F I E L D  O F  C Y B E R S E C U R I T Y ,  H E R N A D E Z   
W O R K S  A S  A  C Y B E R  S E C U R I T Y  A N A L Y S T ,
S P E C I A L I Z I N G  I N  I N C I D E N T  R E S P O N S E  A N D  T H R E A T
I N T E L L I G E N C E .  U N D E R  T H E  D I R E C T I O N  O F  F R A N Ç O I S -
X A V I E R  D J I M G O U  N G A M E N I ,  P R E S I D E N T  O F  R H O P E N
L A B S  A N D  C Y B E R S E C U R I T Y  E X P E R T .  

Article LABS
D E C E M B R E  2 0 2 4

8

About RHOPEN Labs

Subsidiary of the French technology company RHOPEN, RHOPEN Labs is a Cameroonian
company with a capital of 20,000,000 CFA francs, innovative company in the field of
Cybersecurity and Cloud/DevOps and dedicated to protecting African organizations
against digital threats. With a team of experts and leading-edge endogenous solutions,
RHOPEN Labs is committed to providing world-class security services.

https://www.linkedin.com/in/oumar-ali-mahamat-cybersecurity
https://www.linkedin.com/in/oumar-ali-mahamat-cybersecurity
https://www.linkedin.com/in/oumar-ali-mahamat-cybersecurity

